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THE PENETRATION OF STAR-SHAPED BODIES INTO A COMPRESSIBLE FLUID" 

A.L. GONOR and V.B. PORUCHIKOV 

A linear formulation and the method of superposition of special 
solutions are used to obtain exact analytic solutions of non-stationary 
spatial problems of the penetration of star-shaped bodies with an 
arbitrary number of lobes or fins, into a compressible fluid, at 
subsonic and supersonic speeds. 

A general formulation of this problem for a bundle of wedges was 
first given in /l/. 

1. Formulation of the problem of the penetration of a star-shaped body into a compressible 
f%d. We shall consider the normal entry of a star-shaped solid S into a liquid half-space 
(Fig.1). The solid S consists of m identical thin fins or blades, distributed symmetrically 
along a circle, and the thickness of a fin is small compared with its longitudinal and trans- 
verse dimensions. The velocity of motion of the body r;(t) can be either subsonic, or 
supersonic. Thanks to the presence of a small parameter, namely the relative thickness of 
the body, the problem can be linearized, and its solution for the velocity potential of 
perturbed motion ~(t, z, y, z) in a fixed Cartesian x, y, Z-coordinate system (in which the 
plane I 7.0 coincides with the free surface of the unperturbed liquid and the x axis is 
directed along the axis of the body), will be described by the following wave equation: 

&$P -c d a& + d,:v == C,)--d,[cp (.I. >- 0. t ;_, (1) (1.1) 

with zero initial conditions 

cc -- atq = 0 

and the following boundary conditions: 

(t -~~ 0) 
(1.2) 

cp 7 0 (s -- 0) 
(1.3) 

an(P ('I, (t, I, Y. 2) on Sk 
(1.4) 

Here c0 is the speed of sound in the unperturbed liquid and S1, is the projection of 
the k-th fin on its plane of symmetry onto which the boundary conditions are carried by 
virtue of the linear formulation of the problem. Above and henceforth, k = 1, 2, . . . . m. We 
note that since the fins are symmetrical and are symmetrically distributed in space, it 
follows that the condition &(P = 0 must hold on the planes of symmetry of the fins outside 
their projections S, (Fig.2). 

Fig.2 shows the section of three-dimensional space by the plane z = const>O after 
the linearization of the problem. The dashed lines represent the parts of the cross-sections 
of planes at whose points the condition &,(P = 0 holds, and the corresponding solid lines 
O,A,, O,A,, . . . . O,A, represent the cross-sections of the corresponding projections S,. 
s,, . .( sn,, on each side of which the symmetrical condition 3-m == v, (t. z, y, 2) holds. 

In order to ensure that the solution of the problem in question is unique, it is 
sufficient to require /2/ that the pressure, in the neighbourhood of the lines and points at 
which the boundary of the body is not smooth, satisfies the following constraints: p~=c' 

O(E) as F - 0, where (3 > -1 for a moving point (the sharp bodies and corner points 
of the moving edges of projections S,), fi > --'I, for a moving line (points on the moving edgesS, 
without the corner points) and for the fixed point O>B>O for the fixed line (the line 
of intersection of projections S, which is a part of the x axis and the line of intersection 
of the projections S,, S,, . . . . S,,, with the plane f y 0). 

Here E is the distance to the line (point) at which the body is no longer smooth and 
the quantity C and the residue term O(efi) can depend on time and other spatial variables. 

We note that the pressure is determined with help of the linearized formula for the 
Cauchy-Lagrange integral 

P -Pa = --Po&'p (1 .,T) 

i"PrikZ.Matem.Mekhan.,53,3,405-412,1989 

308 



309 

where PO and PO is the pressure and density of the unperturbed liquid. 
For the flow pattern discussed above (Fig.2) it follows that the flow within every 

sector with the opening angle,*@ = 2nim, e.g., Al’A,OIA,A,‘, is the same as in the remaining 

sectors. 
Thus the solution of the initial problem of penetration is reduced to that of solving 

Eq.(l.l) within the spatial sector A,‘A,O,A,A,’ in the region x> 0 (Fig.l), with zero 

initial conditions (1.2), boundary conditions (1.3), a given normal derivatives d,,cp on the 

boundary planes, d,,cp = v, on O,A, and O,A,, a,,(~ = 0 on A,A,’ and &A,', and 

with the constraints shown above for the neighbourhoods of the breaks in the surface of the 
body. 

Fig.1 Fig.2 

Fig.3 Fig.4 

2. Method of constructing the solution of the probZem for an arbitrary nwaber of fins. 
In order to construct the solution of the problem formulated above for the sector 

A,‘A,O,A,A, with the aperture angle zc‘* = 2nim, we shall use the principle of super- 
position of solutions of the linear problems. We shallconstruct a solution of the problem 
in the form of a linear combination of the auxiliary solutions of certain mathematical 
problems each of which may, generally speaking, have no physical meaning. 

Let a solution rp = ql(t, 2, y, 2) of wave Eq.(l.l) for the half-space x>o (see the 
cross-section x = const>O in Fig.3) satisfy the zero initial conditions (1.21, the boundary 
conditions (1.3) and conditions in the plane z. = 0; &ncp = v,(t, 5, y, 10) 
Fig.3, a& = 0 outside S, 

on S1 (OxA, in 
(the y axis outside the segment O,A, <n Fig.31. 

We shall first consider the case when m = 21- 1 (the star-shaped body has an odd 
number of fins). Let us superimpose on the solution CQ = ~(t, I, y, z) the solutions of the 
problem obtained by consecutive rotation of the plane z = 0 (Fig.3) about the 2 axis, with 
the normal derivative a,cp specified on it, by the angles qfi = qok(k = 1,2,...,21- 2), so 
that the cross-section O,A, will occupy consectively the positions O,At,O,A,,...,O,Azl-l. 
Since the cross-sections O,A,, O&A,, _ .., OIA,,_, are distributed symmetrically (and their 
even number is 21- 2) about the plane 2 = 0, it follows that the additional solutions will 
not affect the values of the derivative &.,cp in this plane. Similarly, the values of &,cp 
in the rotated planes will also not be affected. As a result, we obtain the solution of the 
problem periodic with respect to the angle II, (y = TCOS$,Z = rsin$) with period 9 =qO 
corresponding to the configuration in Fiq.2, i.e. we obtain a solution of the initial linear 
Problem (l.l)-(1.5) which has the form 
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Formula (2.1) is obtained for a body with an odd number of fins. In the case of an even 
number of fins the construction is analogous and the solution is also given by formula (2.1). 

Thus in order to obtain the solution (2.1) we must obtain an auxiliary solution 'J 

Vl (L. x:, Y. 2) in the region I,>O. To satisfy the condition (f 0 in the plane .I 0. 
we shall continue the solution ((8 '1 I in an odd manner from the region 1 ,' 0 to the 
region z < 0. 

Further, taking into account the fact that w, is even in 2, we finally 
problem of determining the function v,(t,s, y.z). satisfying, in the region 
wave Eq.(l.l), the zero initial conditions (1.2) and the following boundary 
plane z 0: 

&cp1 (6 I, P, z)Iz -it, = c, (t, f. .y) sgn XH IF (L 1'. ,!/)I H (t) 
(H Cd) 1, a’ ;> 0: H (.T) 0, 1’ < 0) 

arrive at the 
z> 0, the 

condition in the 

(2.2) 

Here P(t,z, y) -~: 0 is the equation of the line BA,B’OR att>O (Fig.4) bounding the region 

S, and its symmetrical image S,', and the inequality F (t.x, y)> 0 holds at points inside 
the region S, $ S,' . 

The solution of this problem is known (it can be obtained directly using integral 
transforms) and has the form /3/ 

(2.3) 

fj .z [@ _ Q’ + (y _ + + z'J": 

(the quantity &a~,Jz.=+o is defined in (2.2)). 
Since the solution obtained is even in 2, it can be used over the whole space - m (z( 

co, and it is continuous in it. However, and passing through the plane region S, + S,' the 
normal derivative becomes discontinuous (or, according to (2.2)), 

(d,%)z=+o =y -(a,cp,)z,-o = &cpl 7: U,, sgn 5) 

Taking into account the relations (1.5), (2.1) and (2.31, we obtain 

In particular, if the form and the cross-section of the finare both triangular (Fig.41 
and the rate of penetration of the body is constant (v(t)= vO), then u,, (t,z, y) = uoy, where 
y = (1 + ctg* a cosecz fl)-'/*z J3 tg a (or p< I), and 

Then we have 

where the domain of integration A is found from the solution of the system of inequalities 

F It - (Kc,,), 5, nl > 0, t - (R,c,) >o 

In the special case when the velocity of motion of the edge along the free surface 
(point A,) along the 0y axis in Fig.4 is subsonic, i.e. v,tga< c,,, we obtain the following 
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relation for the pressure term in formula (2.4): 

Transforming the 

a& and changing to 

we obtain 

(2.5) 

b = (I@ - 15 1 ) tg a - y, a = u0 tg a/c, = Al tg a < 1 

M = v,lc,, Y C: r cosg, z = r sin*, 5 > 0 

denominator in the integrand in (2.5) using the relation Q,-- y = b - 
dimensionless variables 

X1 > 0, y’ = r1 COS *, z1 = r1 sin $, r1 = [(yl)’ + (z’)~]‘/* 

qo’ = y’ -I- (@-a ((b’)” + (1 -a’) [(xl-- El)* + (zl)zJ~/~)~(l - a') 

b’ = fi - j E’ / ) tg a - y* 

From now on, we shall omit the superscript 1. 
Let us now consider, one after the other, the subsonic case (M< 1) and the supersonic 

case (M>1) case. 

3. Penetzwtion of a body with t~~Zar fins at a constant subsonic vetocity, 

Let M<l (and a< 1). We shall replace the infinite limits of integration in 
(2.6) by the finite limits 5_ and E . which can be found from the inequality q,, >O , and 
have the following form for the points in question belonging to the region 22 + Y" + $<M-z, 
x>O when M<l,n<l: 

(1 - W) g* = --s&Pfl T [(SW T 1)s i- MZ (1 - M2)(23 4 Y2 f (3.1) 
, Z” - M-Z)J’,‘* (E’ > 0, 6- < 0) 

Since g-(--x) = 5' (x), it follows that relation (2.6) can finally be written in the form 

p1 (x, r, $1) = (2~)3w,cm IA (4 - A (--x)T, z 2 0 (3.2) 

A (.z) = N-l In B (x, y, z, $), B (x, Y, z, *) = C, (2, y,z, *))(I - a%). 

(1 + NM)_' [N {(tg tt - Y)" + (1 - a%) (x* + .P)p/%- tgs a + 
ytg a -x (1 - $)I_' 

c* (x, Y* z,*) = 1 - 2 -I- y (I - Ma) tg a f N ((1 - .z)" + (l - MS)* 
(y" + za)}'l*, N = fsecP a, - @)'/s 

Thus in accordance with (2.4) and (3.2) we obtain the following expression for the 
dimensionless pressure at any point (x, T-, 9,) of perturbed region x2 + y2 -+ zz( IF' (x> 0) : 

Yk z pcos [JI - 2n (k - 1)m-'1, zk = r sin Ilp - 2n (k - 1) H'l 

(3.3) 

Formulas (3.2) and (3.3) twether yield the following results: 
lo. When x--to, we have B (+O, yrt zlr, I&) = B (-0, &, z%, rb), and this yields pQ -+ 0. 
2". When 52 + Y2 '-1- 9 --t hP, we have B (*I, yk, zk,*)- 1 and PO-*. 0. 
3O. When zg=o, O<s<l and yx-+ (1 - z)tg a, we find that the demoninator in the 

expression for B(x, yx,zk,$) tends to zero. Therefore 

In IB (5, YK, zk,$)iB (-x3 Yli, zk, $)‘I - + 00 
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and p' has a logarithmic singularity at the corresponding edge of the fin. 
4O. At the points of the x axis outside the point B, i.e. when !/i; ;;; it, .I' L;il I , the 

pressure p' is finite, but has a logarithmic singularity when .r-.-+ t ~0. 
The above results satisfy the constraints imposed on the order of the singularities 

shown above; solution 13.3) is therefore unique. 
We note that although the velocity component %oiL in the auxiliary solution 'Vi has 

a logarithmic singularity on the OB axis (Fig.41, the singularities cancel each other in the 
course of constructing the required solution 'r p so that we have, in accordance with 141, 

//, 

and the velocity at the axis 03 outside the neighbourhoads of the points 0 and B is limited. 

1 

0 R. 2s 45 R.75 c 

Fig.5 

9. 

Fig.6 

A detailed investigation of the flow characteristics was carried out for a star-shaped 
body with fins of triangular shape and cross-section (Fig.41, with a number of vanes equal to 
m = 4. Fig.5 shows data on the pressure distribution over the fin surface 9 = 0 (the 
solid lines) and in the plane tp =: n/4, passing through the bisectrix of the angle between 
the fins, in various cross-sections x 2 coast (the dashed lines). Curves 2-4 correspond to 
x = 0.3, 0.5, 0.7, 0.9. 

The computations were carried out for M =0.8, a = n/4, and the pressure was referred, 
for every cross-section x 7 const, to the mean value of the pressure at the wall of a two-fin 
wedge and denoted by K An increase of almost a factor of 2 in the pressure over the whole 
region of perturbed flow between the fins is due to their strong interference. The pressure 
retains its high values at the wall and along any ray within the region bounded by the fins, 
and drops substantially outside this region. 

Thus, analysing the pressure distribution we can draw qualitative conclusions that the 
penetration of a star-shaped body into a liquid is accompanied by the formation of a wide 
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region of high pressure which moves together with the body. A similar assertion was deduced 

in /l/ for an ensemble of wedges. The dependence of the resistance of the star-shaped body 
referred to the resistance of a circular cone of equivalent length and volume, with an 
aperture half-angle 0, on the angle a at the tip of the fin, is shown in Fig.6 for M = 0.9. 
We see that the resistance of a star-shaped body can be greater than the resistance of the 
equivalent cone (when the angle a) is relatively small), and smaller when the angle a. 
increases. 

The drop in resistance was noted earlier in the case of hypersonic gas flow past a star- 
shaped solid. This was explained by the fact that in the case of a body of constant length 
and volume (13 = const) the increase in the tip angle CL results in making the fin thinner and 
reducing the wave resistance of the body. However, in the case of hypersonic flow past a 
star-shaped body the wave resistance is smaller than that of the equivalent cone over a wide 
range of variation in the value of a. . The increase in the resistance of such a body 
entering the liquid with subsonic velocity, compared with the resistance of the equivalent 
cone, is apparently caused by interference from the neighbouring fins, which more or less 
ceases when the flow is hypersonic. 

4. Rmetration of a star-shaped body with a constant supersonic velocity. 

Let M> 1 (a< 1). Just as in the subsonic case (M< l,a< 1), discussed above, the 
solution ~~(x,r,$) of the auxiliary problem for the constant velocity of entry ~3~ and a 
triangular fin of cross-section S, is written in the form of the integral (2.6). In the 
subsonic case the solution was written in terms of elementary functions. We shall use the 
same methods to reduce the integral (2.6) to elementary functions in the present, supersonic 
case of entry with subsonic edges (Fig.7). 

Just as in the subsonic case, the domain of integration in % is determined by the 
condition G> 0, where q. is given by the formula in (2.6) (the superscript 1 on the 
variables has been omitted everywhere from formula (2.6) onwards). This condition leads to 
the system 

a2 {b' + (1 - a4) ((s - 5)' + z*J) < Ib + y (1 - az)]" 

b + Y (1 - a") > 0 (4.1) 

The first inequality in (4.1) to the regions %>O 
inequalities for %, 

and %<0 reduces to quadratic 
which can conveniently be written in the form 

u2 (M2 - 1) f 2 (1 T z) u + &P (y' + z") - (1 F +< 0 (u E % - 5) (4.2) 

where the upper sign is taken for %>O and the lower sign for % (0. The second in- 
equality in (4.1) takes the form 

-l+yMa<%cl-yMa 

Before obtaining the solution of system (4.1) in various regions of perturbed motion of 
the medium, we shall write expressions for the roots of the quadratic trinomials on the left- 
hand sides of inequalities (4.2). These have the form 

%i* = IxM'T 1 f (e-1)' [(SW r 1)" + M* (1 - W) (.z’ + y’ + 
z2 - M-L)PJ,} x (M” - I)-’ (i = 1, 2) 

(4.3) 

where %Lz (%,s) are the roots of the quadratic trinomial from the left-hand side of (4.2) 
for the upper (lower) signs in (4.2). 

Depending on the values of the variables and parameters, these roots may be real or 
complex, and they may appear, or not appear in the regions %>O and %<O. 

In the general case we have six regions of perturbed motion appearing when the body 
enters the liquid at supersonic velocity. The regions are symmetrical and occupy the whole 
half-space I> 0 of the space in question. 

Analysis shows that when M>l, a<l, the solution of the auxiliary problem is non- 
zero only in regions P and Q (see the cross-section z=o 
Fig.7), 

or the perturbed region in 
and this agrees with physical ideas. As a result we obtain the following relations 

for the limits of integration: 

%,- < 5 < El’ in the region P (s* + y2 + Z? < jlp, I > 0) 

f,’ < % -c El’ in the region Q(s2 + y? + z*> Me’, 

M-2 < 5 < 1 - I(z* + y”) (iw - l)l"Z) 

For region P the limits of integration %I- and 5,' are the same as in the subsonic 
case. For region Q, where the roots %,' and 5,'. serve as the limits of integration, a 
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solution can also be found using the method of deriving the expressions (3.2) and (3.3). As 
a result, using (2.4) we obtain the following expressions for the dimensionless pressure 
analogous to (3.3) in the region Q: 

(the notation used is the same as that in formulas (3.2)). 
Thus in the case of supersonic entry of a star-shaped body (M> i) with subsonic edges 

(a 7 M tg a < 1) , the formulas desribinq the solution in the subsonic region r2 -L yL -i- r2<.M-? 
(region P in Fig.7), are identical with formulas (3.3) obtained for subsonic penetration. 
In the supersonic region the solution is non-zero only within the characteristic cone (M'- 
1)':* (y' + ?)'i, < 1 - I. bounded from above by the sphere x2 T yJ -+-z? : :M-' (region & in 
Fig.7). The solution for the dimensionless pressure within this region is given by formulas 
(4.4). 

Analysis the solution we find that at the edges of the body (BA, in Fig.7) the pressure 
has a lwarithmic sinaularitv in both the supersonic and subsonic reaions. When the tin of 
the body (B in Fig.7)-is approached 
finite values, so that the function 
the body (OB in Fig.7) the pressure 
sonic region (BE in Fig.7) it has a 

from different directions, _ the pressure takes various 

JJe has no limit at the tip of the body. On the axis of 
is continuous and bounded everywhere, and in the super- 
constant value equal to Pa (avrn(2n1V)) III I(1 - ‘V) (1 - X)1. 
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